European Cetacean Bycatch banner loading

EUROPEAN CETACEAN BYCATCH CAMPAIGN
"Man is but a strand in the complex web of life"

Internal links buttons

HOME - SITE MAP - NEWS - CURRENT ISSUES - PHOTOS - ARCHIVE - CONTACT - LINKS - SEARCH

logomast7a.jpg

have also detected PCB residues in Danish farmed trout and imported Chilean farmed salmon (Intrafish: 2002a). Both the Irish Food Safety Authority and the Pesticides Residues Committee in the UK have found that farmed salmon is four times more contaminated in terms of PCBs, DDT, hexachloro-benzene and chlordane than wild salmon (FSAI: 2002, PRC: 2002).

Baltic seafood is so contaminated there have been concerns over PCB contamination of fishery products (Kiviranta, 2002). Consequently, Finland and Sweden negotiated a derogation out of the EC dioxin regulations (ENDS: 2001b). The EC estimate that approximately 20% of all industrial fish (mainly sprat and herring) is by definition ‘contaminated’ and above the new limits set for dioxins and PCBs (European Parliament: 2001) but for some countries such as Italy, Greece and Denmark over 50% of their industrial fish catches have “high conflict potential” with the new dioxin regulations (i.e. more than half of their industrial fish is contaminated). For Finland and Sweden that figure rises to 100% and 90% respectively (European Parliament: 2001). Norwegian seafood products are also contaminated (Lundebye et al: 2000, ENDS: 2001a). The Institute of Marine Research in Norway explain how PCB contamination in fish meal has led them to seek substitutes further afield in the Arctic and further down the food chain in the shape of krill:

“PCB accumulates in fish, so there is more PCB higher in the food chain. That means that there is less PCB in krill, which is lower in the food chain” (Hjellestad: 2002)

Consumers, however, are increasingly concerned over higher levels of contaminants in farmed salmon (Edwards: 2002b). As well as containing more PCBs, dioxins and DDT, farmed fish contain more fat and less of the healthy Omega 3 fish oils (Vliet and Katan: 1990, Cronin et al: 1991, George and Bhopal: 1995, Paone: 2000a). According to the Food and Drug Administration in the US, farmed salmon, for example, are four times fatter than wild salmon (Paone: 2000a). And farmed sea bass and sea bream have been found to contain 17 and 7 times more fat than their wild cousins (the same survey showed farmed turbot contained three times more fat than wild turbot) (Richardson: 2001b). The notion that eating farmed salmon is universally good for public health is no more than a sales gimmick sold by supermarkets intent on boosting profits and Government agencies who have invested a great deal of money in bankrolling salmon farming at the expense of wild fisheries.

The glossy packaging does not even say the product is farmed let alone what other hidden extras it contains. Listeria in farmed salmon is becoming much more of problem in Europe (EC: 1998) with Irish, Scottish and Norwegian salmon recalled by the Food and Drug Administration in the United States (FDA: 2002). Following illegal use of ivermectin in Scotland two British supermarkets refused to sell farmed salmon from affected farms (New Scientist: 1997). The artificial colouring Canthaxanthin (E161g), due to health concerns over its links with eye defects in children, is now the subject of a EU-wide consultation with a view to a four-fold reduction in salmon and trout diets (EC: 2002a). Canthaxanthin use is so widespread that it has been detected both in salmon farm escapees (Poole et al: 2000), their offspring (Saegrov et al: 1997) and on the sabed (Girling: 2001). In the UK, Scottish Quality Salmon have been actively lobbying against any reduction whilst some supermarkets are calling for a complete ban. In the US, the law requires Canthaxanthin to be labelled on the packaging (Cherry: 2002). In the UK, France, Spain and across the European Union the new EC fish labelling regulations which came into force on 1st January 2002 (EC: 2001c) are being flouted (Blythman: 2002, Richardson: 2002a, FIS: 2002a).

Given surveys by the UK and French governments (Seafish: 2001, Browne: 2001c, Richardson: 2002c) showing the general public distrusts farmed fish products it is not altogether surprising that supermarkets are reluctant to reveal whether fish has been farmed in closed cages or caught in open ocean. More seriously, farmed salmon mis-labelled as ‘wild’ has led to an EC-sponsored project designed to detect food fraud. For example, it was revealed last year that 25% of ‘wild’ fish in France was actually farmed (Richardson: 2001a). Since September 2001 a consortium in France, Italy, the UK and Norway has been working to develop a validated method to enable official laboratories to determine exactly where fish come from, and whether or not they are wild (EC: 2001b). That consumers are still unaware they are buying farmed salmon let alone a tainted product that contains high levels of artificial colourings (and is contaminated with PCBs and dioxins) is a vital public health and public awareness issue. The World Health Organisation recently investigated ‘Food Safety Issues Associated with Products from Aquaculture’:

“The study group concluded that there were considerable needs for information associated with the aquaculture sector of food production. The gaps in knowledge hinder the process of risk assessment and the application of appropriate risk management strategies with respect to food safety strategy for products from aquaculture” (WHO: 1999, p45)

This view is echoed in research commissioned by the EC; namely that:

“Aquaculture brings with it new problems – not least it raises new food safety issues because of the human interference in the food production cycle….Concerns over sustainability, environmental degradation and food safety can only become more pronounced” (MacAllister and Partners: 1999, pp 36-43)

From a public health perspective, therefore, farmed fish is a poor relation and no substitute for wild fish. Environmental and public interest groups have campaigned directly against salmon farming and in support of wild salmon (Paone: 2000a, Ecotrust: 2002, David Suzuki: 2002, IATP: 2002). This month a coalition of groups in North America will launch a “Farmed and Dangerous” campaign outlining the public health risks of eating farmed salmon and another UK and Ireland protest raising public awareness of farmed salmon will take place on 26th October. With the European market already flooded with cheap farmed sea bass, sea bream and salmon, a consumer boycott of farmed fish products could be the final nail in the coffin of sea cage fish farming. If the financial markets are any barometer, the ailing world leader Nutreco is in a very poor state of health indeed (Intrafish: 2001, Charron: 2002a, Berge: 2002a, 2002b). The fifth fundamental flaw could be fatal to the future of sea cage fish farming in Europe.


Conclusions - closing the net on sea cage fish farming:

The pace of aquaculture expansion has meant that certain farmed fish products now represent a global threat to both the marine environment and consumer safety (e.g. the recent SANCO Rapid Food Alerts concerning chloramphenicol in farmed shrimp from Asia or the ongoing crisis over dioxins and PCBs in farmed salmon). Moreover, the need for increasing quantities of wild caught fish meal to fuel the expansion of sea cage fish farms (such as tuna, salmon, trout, halibut, cod, sea bass and sea bream) is jeopardising the very future of wild capture fisheries. As Dr Daniel Pauly points out in the scientific journal Nature:

“Modern aquaculture practices are largely unsustainable: they consume natural resources at a high rate and, because of their intensity, they are extremely vulnerable to the pollution and disease outbreaks they induce…..Much of what is described as aquaculture, at least in Europe, North America and other parts of the developed world, consists of feedlot operations in which carnivorous fish (mainly salmon, but also various sea bass and other species) are fattened on a diet rich in fish meal and oil. The idea makes commercial sense, as the farmed fish fetch a much higher market price than the fish ground up for fish meal (even though they may consist of species that are consumed by people, such as herring, sardine or mackerels, forming the bulk of the pelagic fishes). The point is that operations of this type, which are directed to wealthy consumers, use up much more fish flesh than they produce, and hence cannot replace capture fisheries, especially in

Top

Next